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1. Let A =

1 2 3
2 5 2
3 1 5

 and b =

14
18
20

 . Obtain the LU decomposition of A and use it to solve the

system Ax = b.

Solution: Let A = LU with L =

 1 0 0
l21 1 0
l31 l32 1

 and U =

u11 u12 u13
0 u22 u23
0 0 u33

 . Then equating the

entries of the matrix on both sides, by a simple calculation we find that

L =

1 0 0
2 1 0
3 −5 1

 , U =

1 2 3
0 1 −4
0 0 −24

 .

Now let y = Ux. Then we first solve for Ly = b. A simple calculation leads to y =

 14
−10
−72

.

Then we solve for Lx = y to get x =

1
2
3

. �

2. (i) Let a, b be column vectors in Rn and consider the matrix A = I + abt. Show that
A2 + αA+ βI =©

Solution: Note that if x ∈ Rn is orthogonal to b, then Ax = x+ abtx = x+ < b, x > a = x. Since
the orthogonal complement of b is of dimension n−1, it follows that the characteristic polynomial of
A is of the form (λ−1)n−1(λ−r) for some real number r. Then it follows that A satisfies some second
degre equation of the form A2 + αA+ βI =©. Therefore, when A−1 exists, A−1 = − 1

β (A+ αI).

(ii) Consider the n× n matrix

B =


a b b ... b
b a b ... b
b b a ... b
... ... ... ... ...
b b b ... a

 ,

where a, b are real numbers such that a 6= b and a + (n − 1)b 6= 0. Solve the system Bx = c for a
given vector c ∈ Rn.

Solution: Note that B = (a− b)B1, where B1 =

I + b
a−b


1
1
...
1

(1 1 ... 1
).

Then as in (i), B2
1 +αB1 +βI =© with α = −(1 +a+ (n− 1)b) and β = (a+ (n− 1)b)2. It is easy

to see that B1 is invertible and therefore B−11 = − 1
β (B1 + αI). Then 1

a−bB
−1
1 c solves the equation

Bx = c.
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3. (a) Let A =


1 1 2
1 2 0
0 0 1
1 1 0

. Find a 4× 3 matrix Q satisfying QtQ = I3 and an upper triangular 3× 3

matrix R with all diagonal elements positive such that A = QR.

Solution: Let v1 =


1
1
0
1

, v2 =


1
2
0
1

, v1 =


2
0
1
0

. Let e1 = v1
||v1|| =


1√
3
1√
3

0
1√
3

, ẽ2 = v2− < v2, e1 > e1

and e2 = ẽ2
||ẽ2|| =


− 1√

6√
2√
3

0
− 1√

6

. ẽ3 = v3− < v3, e1 > e1− < v3, e2 > e2 and e3 = ẽ3
||ẽ3|| =


1√
3

0
1√
3

− 1√
3

. Then

if Q = [e1 e2 e3] =


1√
3
− 1√

6
1√
3

1√
3

√
2√
3

0

0 0 1√
3

1√
3
− 1√

6
− 1√

3

, we have QtQ = I3, since {e1, e2, e3} is an orthonormal set

of vectors. Now let R =

< v1, e1 > < v2, e1 > < v3, e1 >
0 < v2, e2 > < v3, e2 >
0 0 < v3, e3 >

 =


√

3 4√
3

2√
3

0
√
2√
3
−
√
2√
3

0 0
√

3

. Then it is

clear from the construction of e1, e2 and e3 that A = QR, where Q and R are as described above.

(b) Suppose V is an inner product space over C and P is a projection in V . If < Px, x >≤ ||x||2
for all vectors x ∈ V , show that P is an orthogonal projection.

Solution: Let x ∈ ImP and y ∈ KerP . Then foe any λ ∈ C, we have

< P (x+ λy), x+ λy >≤ ||x+ λy||2.

Since x ∈ ImP and P is a projection we have Px = x. On the other hand since y ∈ KerP , we have
Py = 0. Hence from the above inequality it follows that

||x||2 + λ̄ < x, y >≤ ||x||2 + |λ|2||y||2 + λ < y, x > +λ̄ < x, y > .

So we see that λ < y, x > has to be real. But since λ ∈ C is arbitrary, it follows that < y, x >= 0.
Hence x is orthogonal to y. Since x ∈ ImP and y ∈ KerP are arbitrary, it follows that P is an
orthogonal projection.

4. Let u1, u2, v1, v2 be non-zero column vectors in Rn and define P = u1u
t
2 + v1v

t
2. Derive sufficient

conditions on the given vectors so that P is a projection. Further, derive sufficient conditions on
the given vectors so that P is an orthogonal projection.

Solution: Note that given any vector x, Px =< u2, x > u1+ < v2, x > v1. So ImP is the subspace
spanned by the vectors u1 and v1. So if Pu1 = u1 and Pv1 = v1, then P is a projection. Now

Pu1 =< u2, u1 > u1+ < v2, u1 > v1
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and
Pv1 =< u2, v1 > u1+ < v − 2, v1 > v1.

Hence the sufficient conditions for P to be a projection are u2, v2 are in the orthogonal complement
of the subspace spanned by the vectors u1 and v1 and < u2, u1 >= 1, < v2, v1 >= 1.

To do the second part we know that P is an orthogonal projection if and only if P t is the same
linear operator. Now P t = u2u

t
1 + v2v

t
1. Again writing the equations as above, a simple calculation

shows that P t is the same projection as P if u1 = u2, v1 = v2 and {u1, v1} is an orthonormal set of
vectors.

5. Let A =

1 0 1
0 1 1
1 1 2

 and b =

1
2
4

 ∈ R3. Let c = min ||Ax− b||, where the minimum is taken over

all the column vectors x in R3. Determine c and obtain the solution x with least norm such that
c = ||Ax− b||.

Solution: A = BC, where B =

1 0
0 1
1 1

 and C =

(
1 0 1
0 1 1

)
. Let B+ = (BtB)−1Bt =

1
3

(
2 −1 1
−1 2 1

)
and C+ = Ct(CCt)−1 = 1

3

 2 −1
−1 2
1 1

. Let A+ = C+B+ = 1
9

 5 −4 1
−4 5 1
1 1 2

.

Then we know that AA+A = A and A+A is an orthogonal projection. Ax − b = AA+(Ax − b) +
(I −AA+)(Ax− b) and therefore,

||Ax− b||2 = ||AA+(Ax− b)||2 + ||(I −AA+)(Ax− b)||2 = ||Ax−AA+b||2 + ||b−AA+b||2.

Therefore, ||Ax− b|| ≥ ||A(A+b)− b|| with equality holds when x = A+b. Hence

c = ||A(A+b)− b)|| =

∣∣∣∣∣∣19
1 0 1

0 1 1
1 1 2

 5 −4 1
−4 5 1
1 1 2

1
2
4

−
1

2
4

∣∣∣∣∣∣
=

∣∣∣∣∣∣19
1 0 1

0 1 1
1 1 2

 1
9
11

−
1

2
4

∣∣∣∣∣∣ =
1

9

√
29.

Now let x be any solution of Ax = c. Then x = A+Ax+ (x−A+Ax). Which implies that

||x||2 = ||A+Ax||2 + ||x−A+Ax||2, since A+A is an orthogonal projection

= ||A+AA+b||2 + ||x−A+AA+b||2 = ||A+b||2 + ||x−A+b||2.

Hence ||x|| ≥ ||A+b||, showing that A+b = 1
9

 1
9
11

 is the solution with least norm.

6. Let A =

1/3 1/3 1/3
1/2 0 1/2
1/4 1/4 1/2

. Explain in detail why the limit limk→∞Ak exists and find the limit.
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Solution: We note that A is non-negative and A2 is strictly positive, hence A is irreducible.
By Calculating the characteristic polynomial of A we see that 1 is the dominant eigenvalue of

A and At and the other eigenvalues are real and of modulas less than 1. Also u =

1
1
1

 and

v =

1/3
2/9
4/9

 are the eigenvectors corresponding to the eigenvalue 1 for A and At respectively and

< u, v >= 1. It follows from Au = u, Atv = v and < u, v >= 1 that Ak(I − uvt) = Ak − uvt and
(I−uvt)Ak = Ak−uvt. Let Bk = Ak−uvt. Note that Bu = 0 and if Bx = λx, A(I−uvt)x = λx. So
A(I−uvt)2x = λ(I−uvt)x, which implies that A(I−uvt)x = λ(I−uvt)x. Hence σ(B) ⊂ σ(A)∪{0},
where σ(B) denotes the spectrum of B. Next we show that 1 /∈ σ(B). Suppose there exists x such
that Bx = x, x 6= 0, then A(I − uvt)x = (I − uvt)x, which implies that (I − uvt)x = cu for some
constant c. Therefore, x = c′u for some c′, which is a contradiction to the fact that Bu = 0. Hence
1 /∈ σ(B). Hence the spectral radius of B is less than 1, so limk→∞Bk = 0. Then it follows that

limk→∞Ak = uvt =

1/3 2/9 4/9
1/3 2/9 4/9
1/3 2/9 4/9
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